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Binomial coefficients

Fibonomials

Comments



Let Z be the integers. Let n, k € Z with 0 < k < n. Define the
binomial coefficients by

(&) = mon

The (}) can be displayed in Pascal’s triangle

It appears as if (Z) is always an integer. How can one prove this?



Induction. Extend () to k € Z by letting

<Z>:O if k<0ork>n.

Lemma
Forn>1 and k € Z we have

HE A ]

Express the right side in terms of factorials and add. O

Theorem

We have (}) € Z for all n, k.

Proof.

Induct on n. This is clear when n = 0. Assuming the result for
n — 1 and using the lemma gives

n_n—1+n—1__t +int — it 0
W= P = integer integer = integer .



Combinatorics. If (}) is the cardinality of some set, then (}) € Z.
If S is a set then we let #5S be the cardinality of S.

Theorem
If #S = n then

<Z> —#{T|TCS and #T = k}.

Factorization. If p is a prime and n € Z then let
vp(n) = the largest k such that p* is a factor of n.

Ex. Since n =50 = 2 - 52 we have 1,(50) = 1 and v5(50) = 2.
If c,d € Z then c/d € Z iff vp(c) > vp(d) for all primes p.

Theorem
For n > 1 and p prime we have

=[5+ [3] |3 -

where |-| is the round-down function.



The Fibonacci numbers are defined by
F1:F2:]_7 F, = n_l—i—F,,_gfornZ?).
Ex. The first few Fibonacci numbers are

=1 F=1 FR=2 Fk

A Fibotorial is
Fy = FpFo1---Fu.

<n> B F!
k) g FeFo i

(5) _ F  5-3:2-1-1 s
2)r FRF (1-1)(2-1-1) 77

We wish to show that (Z)F is always an integer.

A Fibonomial is




Induction. By induction on n it is easy to prove the following.

Lemma
Forn> k >1 we have

Fn= FkFn_k+1 + F1Fn—k.

Theorem
Forn > k > 1 we have

n n—1 n—1
= F. F_ .
<k>F ! k+1<k_1>F+ : 1< k >F

<n> Fo-F! 1 (FkFa—ki1+ Feo1Fok) - Fh g
F

Proof.
T ORFL. FiFok
n—1 n—1
= F,_ Fi_ . O
iy, ("),
Corollary

Forn>k >0 we have (}). € Z.




Combinatorics. Consider a row of n squares. A tiling, T, is a
covering of the row with disjoint dominos (covering 2 squares) and
monominos (covering 1 square). Let 7, be the set of such tilings.
Ex.

75 . [ ] [ ] [ ] *— =0 [ ] [ ] *— =0

Note #73 = 3 = F4.

Theorem
For n > 0 we have:

#Tn = Fny1.

Proof Induct on n. It's easy for n=10,1. For n > 2,

#Tn = # | o n—1 + # | et | n—2

#Tn-1+ #Tn—2
= F,+ F,—1 (by induction)
Fr. O



Consider the staircase , in the first quadrant of R? consisting of a
row of n — 1 unit squares on the bottom, then n — 2 one row
above, etc.

Ex.

d6: a tiling:

e
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The set of tilings of , is T(d,) consisting of all tilings of the rows
of d,. Using the combinatorial interpretation of F, we see

HT(0n) = #Tn1-#Tn 2 =Fp-Fnq--- =F,.



A lattice path, p, is a sequence of points in the integer lattice Z2.
Ex. The lattice path p: (3,0),(3,1),(2,1),(1,1),(1,2),(0,2) is

W
Mw w

P—= e

A NW-lattice path takes steps which are one unit north (add the
vector N = [0, 1]) or one unit west (add the vector W = [—1,0]).
A NW-lattice path p from (0,0) to (—x,y) has x + y steps.
Choosing x of them to be W determines p since the other steps
must by N by default. So the number of such paths is (Xiy).

A partition of a set S is a collection of disjoint nonempty subsets
{B1,Ba, ..., B} called blocks whose union is S.
Ex. One parttion of S = {a,b,c,d e, f} is {{a,c},{b,d,f},{e}}.

The following combinatorial proof that (Z)F is an integer was
given by Bennett-Carrillo-Machacek-S. Earlier but less natural
proofs were given by Benjamin-Plott, and S-Savage.



Theorem For 0 < k < n we have (Z)F €.

Proof. It suffices to construct a partition of 7(d,) such that

#B = F,F _, for all blocks B of the partition. Given T € T(,)
we will find the B containing T as follows. Construct a
NW-lattice path p going from (k,0) to (0, n): move N if possible
without crossing a domino or leaving J,; otherwise move W. If
n==6and k=3, and

(076) |_ (076) L
ro s
. .|£.4 .| ot o]
(3,0) (3,0)

An N step just after a W is an NL step; otherwise it is an N/ step.
Let B be all tilings with path p and agreeing with T to the right of
each NL step and to the left of each N/ step, with associated

partial tiling, P. The variable parts of P show #B = F,!(F,i_k. O



Proving F, = FFn_k+1 + Fk—1Fn—k. This identity can be proved
combinatorially by tiling.

Lucas polynomials. Let s, t be variables. The Lucas polynomials,
L, = Ly(s, t) are defined by

Lo=0, Li=1, L,=sl, 1+ tL, »forn>2.
Ex. The first few Lucas polynomials are
Lo=0, Li=1, Ly=s, L3:S2—‘rf, L4:S3+2St.

Note that
L,(1,1)=F, and L,(2,-1)=n.

One can define Lucanomials in the obvious way and generalize all
the results in this lecture.

Divisibility. The divisibility proof will not work directly for (Z)F
The period modulo m of the F, is the smallest d such that

Fniqd = Fn (mod m) for all sufficiently large n. The period always
exists. It is a famous open problem to determine the period of F,
modulo p for all primes p. Using the L,(s, t) and cyclotomic
polynomials, one can give a divisibility proof for the Lucanomials.
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