Stalking the Wild Fibonomial

Bruce Sagan
Department of Mathematics, Michigan State U.
East Lansing, MI 48824-1027, sagan@math.msu.edu
www.math.msu.edu/~sagan

MSU Math Club

Binomial coefficients

Fibonomials

Comments

Let \mathbb{Z} be the integers. Let $n, k \in \mathbb{Z}$ with $0 \le k \le n$. Define the *binomial coefficients* by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

The $\binom{n}{k}$ can be displayed in *Pascal's triangle*

It appears as if $\binom{n}{k}$ is always an integer. How can one prove this?

Induction. Extend $\binom{n}{k}$ to $k \in \mathbb{Z}$ by letting

$$\binom{n}{k} = 0 \quad \text{if } k < 0 \text{ or } k > n.$$

Lemma

For n > 1 and $k \in \mathbb{Z}$ we have

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof.

Express the right side in terms of factorials and add.

Theorem

We have $\binom{n}{k} \in \mathbb{Z}$ for all n, k.

Proof.

Induct on n. This is clear when n=0. Assuming the result for n-1 and using the lemma gives

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \text{integer} + \text{integer} = \text{integer}.$$

Combinatorics. If $\binom{n}{k}$ is the cardinality of some set, then $\binom{n}{k} \in \mathbb{Z}$. If S is a set then we let #S be the cardinality of S.

Theorem

If #S = n then

$$\binom{n}{k} = \#\{T \mid T \subseteq S \text{ and } \#T = k\}.$$

Factorization. If p is a prime and $n \in \mathbb{Z}$ then let

$$\nu_p(n) =$$
 the largest k such that p^k is a factor of n.

Ex. Since $n = 50 = 2 \cdot 5^2$ we have $\nu_2(50) = 1$ and $\nu_5(50) = 2$. If $c, d \in \mathbb{Z}$ then $c/d \in \mathbb{Z}$ iff $\nu_p(c) \ge \nu_p(d)$ for all primes p.

Theorem

For $n \ge 1$ and p prime we have

$$\nu_p(n!) = \left| \frac{n}{p} \right| + \left| \frac{n}{p^2} \right| + \left| \frac{n}{p^3} \right| + \cdots$$

where $|\cdot|$ is the round-down function.

The Fibonacci numbers are defined by

$$F_1 = F_2 = 1$$
, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.

Ex. The first few Fibonacci numbers are

$$F_1 = 1$$
, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$.

A Fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1$$
.

A Fibonomial is

$$\binom{n}{k}_F = \frac{F_n^!}{F_k^! F_{n-k}^!}.$$

Ex.

$$\binom{5}{2}_{E} = \frac{F_{5}^{!}}{F_{2}^{!}F_{2}^{!}} = \frac{5 \cdot 3 \cdot 2 \cdot 1 \cdot 1}{(1 \cdot 1)(2 \cdot 1 \cdot 1)} = 15.$$

We wish to show that $\binom{n}{k}_F$ is always an integer.

Induction. By induction on n it is easy to prove the following.

Lemma

For $n \ge k \ge 1$ we have

$$F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}.$$

Theorem

For n > k > 1 we have

$$\binom{n}{k}_F = F_{n-k+1} \binom{n-1}{k-1}_F + F_{k-1} \binom{n-1}{k}_F.$$

Proof.

$${\binom{n}{k}}_{F} = \frac{F_{n} \cdot F_{n-1}^{!}}{F_{k}^{!} F_{n-k}^{!}} = \frac{(F_{k} F_{n-k+1} + F_{k-1} F_{n-k}) \cdot F_{n-1}^{!}}{F_{k}^{!} F_{n-k}^{!}}$$

$$= F_{n-k+1} {\binom{n-1}{k-1}}_{-} + F_{k-1} {\binom{n-1}{k}}_{-}.$$

Corollary

For
$$n \geq k \geq 0$$
 we have $\binom{n}{k}_F \in \mathbb{Z}$.

Combinatorics. Consider a row of n squares. A *tiling*, T, is a covering of the row with disjoint dominos (covering 2 squares) and monominos (covering 1 square). Let T_n be the set of such tilings. **Ex**.

$$\mathcal{T}_3:$$
 \bullet \bullet \bullet

Note
$$\#\mathcal{T}_3 = 3 = F_4$$
.

Theorem

For $n \ge 0$ we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

Proof Induct on n. It's easy for n = 0, 1. For $n \ge 2$,

$$\#\mathcal{T}_n = \# \boxed{\bullet} \boxed{n-1} + \# \boxed{\bullet} \boxed{n-2}$$

$$= \#\mathcal{T}_{n-1} + \#\mathcal{T}_{n-2}$$

$$= F_n + F_{n-1} \text{ (by induction)}$$

$$= F_{n+1}. \square$$

Consider the *staircase* δ_n in the first quadrant of \mathbb{R}^2 consisting of a row of n-1 unit squares on the bottom, then n-2 one row above, etc.

Ex.

The set of *tilings* of δ_n is $\mathcal{T}(\delta_n)$ consisting of all tilings of the rows of δ_n . Using the combinatorial interpretation of F_n we see

$$\#\mathcal{T}(\delta_n) = \#\mathcal{T}_{n-1} \cdot \#\mathcal{T}_{n-2} \cdot \cdot \cdot = F_n \cdot F_{n-1} \cdot \cdot \cdot = F_n!$$

A *lattice path*, p, is a sequence of points in the integer lattice \mathbb{Z}^2 . **Ex.** The lattice path p:(3,0),(3,1),(2,1),(1,1),(1,2),(0,2) is

A *NW-lattice path* takes steps which are one unit north (add the vector N = [0,1]) or one unit west (add the vector W = [-1,0]). A *NW*-lattice path p from (0,0) to (-x,y) has x+y steps. Choosing x of them to be W determines p since the other steps must by N by default. So the number of such paths is $\binom{x+y}{y}$.

A partition of a set S is a collection of disjoint nonempty subsets $\{B_1, B_2, \ldots, B_l\}$ called *blocks* whose union is S. **Ex.** One parttion of $S = \{a, b, c, d, e, f\}$ is $\{\{a, c\}, \{b, d, f\}, \{e\}\}$.

The following combinatorial proof that $\binom{n}{k}_F$ is an integer was given by Bennett-Carrillo-Machacek-S. Earlier but less natural proofs were given by Benjamin-Plott, and S-Savage.

Theorem For $0 \le k \le n$ we have $\binom{n}{k}_E \in \mathbb{Z}$.

Proof. It suffices to construct a partition of $\mathcal{T}(\delta_n)$ such that $\#B = F_k^! F_{n-k}^!$ for all blocks B of the partition. Given $T \in \mathcal{T}(\delta_n)$ we will find the B containing T as follows. Construct a NW-lattice path p going from (k,0) to (0,n): move N if possible without crossing a domino or leaving δ_n ; otherwise move W. If n=6 and k=3, and

An N step just after a W is an NL step; otherwise it is an NI step. Let B be all tilings with path p and agreeing with T to the right of each NL step and to the left of each NI step, with associated partial tiling, P. The variable parts of P show $\#B = F_k^! F_{n-k}^!$.

Proving $F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}$. This identity can be proved combinatorially by tiling.

Lucas polynomials. Let s, t be variables. The *Lucas polynomials*, $L_n = L_n(s, t)$ are defined by

$$L_0 = 0$$
, $L_1 = 1$, $L_n = sL_{n-1} + tL_{n-2}$ for $n > 2$.

Ex. The first few Lucas polynomials are

$$L_0 = 0$$
, $L_1 = 1$, $L_2 = s$, $L_3 = s^2 + t$, $L_4 = s^3 + 2st$.

Note that

$$L_n(1,1) = F_n$$
 and $L_n(2,-1) = n$.

One can define Lucanomials in the obvious way and generalize all the results in this lecture.

Divisibility. The divisibility proof will not work directly for $\binom{n}{k}_F$. The *period modulo m* of the F_n is the smallest d such that $F_{n+d} \equiv F_n \pmod{m}$ for all sufficiently large n. The period always exists. It is a famous open problem to determine the period of F_n modulo p for all primes p. Using the $L_n(s,t)$ and cyclotomic polynomials, one can give a divisibility proof for the Lucanomials.

References.

- 1. A. Benjamin and S. Plott, A combinatorial approach to Fibonomial coefficients. *Fibonacci Quart.*. **46/47** (2008/09), 7–9.
- C. Bennett, J. Carrillo, J. Machacek, and B. Sagan, Combinatorial interpretations of Lucas analogues of binomial coefficients and Catalan numbers, *Ann. Combin.*, 24 (2020), 503–530.
- 3. B. Sagan and C. Savage, Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences, *Integers*, **10** (2010), A52, 697–703.
- B. Sagan and J. Tirrell, Lucas atoms, Adv. in Math., 374 (2020) 107387, 25 pp. (electronic).

THANKS FOR

LISTENING!