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Binomial coefficients

Fibonomials

Comments



Let Z be the integers. Let n, k ∈ Z with 0 ≤ k ≤ n. Define the
binomial coefficients by(

n

k

)
=

n!

k!(n − k)!
.

The
(n
k

)
can be displayed in Pascal’s triangle
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It appears as if
(n
k

)
is always an integer. How can one prove this?



Induction. Extend
(n
k

)
to k ∈ Z by letting(

n

k

)
= 0 if k < 0 or k > n.

Lemma
For n ≥ 1 and k ∈ Z we have(

n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
.

Proof.
Express the right side in terms of factorials and add.

Theorem
We have

(n
k

)
∈ Z for all n, k.

Proof.
Induct on n. This is clear when n = 0. Assuming the result for
n − 1 and using the lemma gives(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
= integer + integer = integer .



Combinatorics. If
(n
k

)
is the cardinality of some set, then

(n
k

)
∈ Z.

If S is a set then we let #S be the cardinality of S .

Theorem
If #S = n then(

n

k

)
= #{T | T ⊆ S and #T = k}.

Factorization. If p is a prime and n ∈ Z then let

νp(n) = the largest k such that pk is a factor of n.

Ex. Since n = 50 = 2 · 52 we have ν2(50) = 1 and ν5(50) = 2.
If c , d ∈ Z then c/d ∈ Z iff νp(c) ≥ νp(d) for all primes p.

Theorem
For n ≥ 1 and p prime we have

νp(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

where ⌊·⌋ is the round-down function.



The Fibonacci numbers are defined by

F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.

Ex. The first few Fibonacci numbers are

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5.

A Fibotorial is
F !
n = FnFn−1 · · ·F1.

A Fibonomial is (
n

k

)
F

=
F !
n

F !
kF

!
n−k

.

Ex. (
5

2

)
F

=
F !
5

F !
2F

!
3

=
5 · 3 · 2 · 1 · 1
(1 · 1)(2 · 1 · 1)

= 15.

We wish to show that
(n
k

)
F
is always an integer.



Induction. By induction on n it is easy to prove the following.

Lemma
For n ≥ k ≥ 1 we have

Fn = FkFn−k+1 + Fk−1Fn−k .

Theorem
For n ≥ k ≥ 1 we have(

n

k

)
F

= Fn−k+1

(
n − 1

k − 1

)
F

+ Fk−1

(
n − 1

k

)
F

.

Proof.(
n

k

)
F

=
Fn · F !

n−1

F !
kF

!
n−k

=
(FkFn−k+1 + Fk−1Fn−k) · F !

n−1

F !
kF

!
n−k

= Fn−k+1

(
n − 1

k − 1

)
F

+ Fk−1

(
n − 1

k

)
F

.

Corollary

For n ≥ k ≥ 0 we have
(n
k

)
F
∈ Z.



Combinatorics. Consider a row of n squares. A tiling , T , is a
covering of the row with disjoint dominos (covering 2 squares) and
monominos (covering 1 square). Let Tn be the set of such tilings.
Ex.

T3 :

Note #T3 = 3 = F4.

Theorem
For n ≥ 0 we have:

#Tn = Fn+1.

Proof Induct on n. It’s easy for n = 0, 1. For n ≥ 2,

#Tn = # n − 1 + # n − 2

= #Tn−1 +#Tn−2

= Fn + Fn−1 (by induction)

= Fn+1. □



Consider the staircase δn in the first quadrant of R2 consisting of a
row of n − 1 unit squares on the bottom, then n − 2 one row
above, etc.
Ex.

1 2 3 4 5 6

1
2
3
4
5
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δ6:

1 2 3 4 5 6

1
2
3
4
5
6

a tiling:

The set of tilings of δn is T (δn) consisting of all tilings of the rows
of δn. Using the combinatorial interpretation of Fn we see

#T (δn) = #Tn−1 ·#Tn−2 · · · = Fn · Fn−1 · · · = F !
n.



A lattice path, p, is a sequence of points in the integer lattice Z2.
Ex. The lattice path p : (3, 0), (3, 1), (2, 1), (1, 1), (1, 2), (0, 2) is

p =
N

W WN

W

A NW-lattice path takes steps which are one unit north (add the
vector N = [0, 1]) or one unit west (add the vector W = [−1, 0]).
A NW -lattice path p from (0, 0) to (−x , y) has x + y steps.
Choosing x of them to be W determines p since the other steps
must by N by default. So the number of such paths is

(x+y
x

)
.

A partition of a set S is a collection of disjoint nonempty subsets
{B1,B2, . . . ,Bl} called blocks whose union is S .
Ex. One parttion of S = {a, b, c, d , e, f } is {{a, c}, {b, d , f }, {e}}.
The following combinatorial proof that

(n
k

)
F
is an integer was

given by Bennett-Carrillo-Machacek-S. Earlier but less natural
proofs were given by Benjamin-Plott, and S-Savage.



Theorem For 0 ≤ k ≤ n we have
(n
k

)
F
∈ Z.

Proof. It suffices to construct a partition of T (δn) such that
#B = F !

kF
!
n−k for all blocks B of the partition. Given T ∈ T (δn)

we will find the B containing T as follows. Construct a
NW -lattice path p going from (k, 0) to (0, n): move N if possible
without crossing a domino or leaving δn; otherwise move W . If
n = 6 and k = 3, and

(3, 0)

(0, 6)

T =

(3, 0)

(0, 6)

P =

An N step just after a W is an NL step; otherwise it is an NI step.
Let B be all tilings with path p and agreeing with T to the right of
each NL step and to the left of each NI step, with associated
partial tiling , P. The variable parts of P show #B = F !

kF
!
n−k .



Proving Fn = FkFn−k+1 + Fk−1Fn−k . This identity can be proved
combinatorially by tiling.

Lucas polynomials. Let s, t be variables. The Lucas polynomials,
Ln = Ln(s, t) are defined by

L0 = 0, L1 = 1, Ln = sLn−1 + tLn−2 for n ≥ 2.

Ex. The first few Lucas polynomials are

L0 = 0, L1 = 1, L2 = s, L3 = s2 + t, L4 = s3 + 2st.

Note that
Ln(1, 1) = Fn and Ln(2,−1) = n.

One can define Lucanomials in the obvious way and generalize all
the results in this lecture.

Divisibility. The divisibility proof will not work directly for
(n
k

)
F
.

The period modulo m of the Fn is the smallest d such that
Fn+d ≡ Fn (modm) for all sufficiently large n. The period always
exists. It is a famous open problem to determine the period of Fn
modulo p for all primes p. Using the Ln(s, t) and cyclotomic
polynomials, one can give a divisibility proof for the Lucanomials.
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